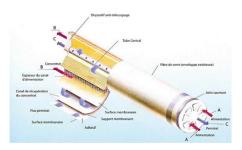


2023

JOURNAL MEMBRANE OSMOSE INVERSE

L'osmose est basée sur le principe fondamental de l'équilibre. Lorsque deux liquides contenant differentes concentrations de solides dissous sont mis en contact, ceux-ci se mélangent jusqu'à uniformisation des concentrations.


En appliquant une pression supérieure à la pression osmostique, l'effet inverse se produit. Les liquides sont refoulés au travers de la membrane, laissant les solides dissous derrière

Construction de membranes d'osmose inverse

La membrane d'osmose inverse est une membrane semi-perméable. Les membranes RO les plus couramment utilisées sont généralement composées d'une membrane composite à couche mince composée de trois couches : une toile de support en polyester, une couche intermédiaire en polysulfone microporeuse et une couche barrière en polyamide ultra-réfléchissante sur la surface supérieure.

Les membranes composites à film mince sont emballées dans une configuration enroulée en spirale. Un tel élément contient de une à plus de 30 feuilles, selon le diamètre et le type d'élément

Applications

L'osmose inverse est un procédé qui permet d'éliminer les particules ayant un poids moléculaire limite de 100 à 200. Ce procédé est parfait pour éliminer des substances telles que les ions métalliques, les acides, les sucres, les colorants, les résines naturelles et les ions

Les membranes d'osmose inverse sont destinées aux applications de :

- ✓ Déminéralisation
- ✓ Dessalement d'eau de mer et d'eau saumâtre
- ✓ Affinage des eaux usées pour rejet ou réutilisation
- ✓ Production d'eau potable
- ✓ Production d'eau ultra pure

Autres applications diverses

- ✓ Agroalimentaire (concentration des boissons)
- ✓ Résidentiel
- ✓ Industrie électronique (rinçage des composants)
- ✓ Industrie de la peinture (concentration et récupération des colorants)
- ✓ Industrie pharmaceutique et médicale
- ✓ Industrie chimique et biotechnologique
- ✓ Production d'eau pour la consommation humaine
- ✓ Production d'eau d'irrigation dans l'agriculture

WATEC DISTRIBUTION distribue des gammes de membranes d'osmose inverse pour le traitement de l'eau saumâtre, l'eau du robinet, l'eau de mer, et avec des familles de membranes aux caractéristiques spécifiques :

- ✓ Standard
- ✓ Faible encrassement
- ✓ Basse pression : faible consommation énergétique
- ✓ Haute réjection : Résistantes au colmatage
- ✓ Membranes pour eau de mer

20 23

JOURNAL MEMBRANE OSMOSE INVERSE

Données générales de conception pour les installations d'osmose inverse

	L'eau de robinet	Eau saumâtre	Eau de mer
Salinité	<1500 ppm	<8000 ppm	< 35000-45000ppm
Récupération	80 %	65-80 %	35-45 %
Pression de travail	< 15 bars	<15-25 bars	50-75 bars
Type de membrane	Low energy 4" ou 8"	Brackich 4" ou 8"	Seawater 4" ou 8"
Flux	<27.2 l.m.h	< 22.1 l.m.h	< 17 l.m.h

Les membranes d'osmose inverse

Les membranes d'osmose inverse d'Hydranautics offrent différents degrés de flux et de caractéristiques de rejet, spécifiquement adaptés pour traiter des applications de traitement de l'eau multiples et variées.

ESPA - Energy Saving Polyamide

L'énergie nécessaire à la pressurisation de l'eau d'alimentation de l'OI est le principal facteur de la consommation totale d'énergie de l'usine d'OI. Les membranes ESPA sont le choix idéal pour les applications exigeant un rendement énergétique élevé, une productivité sans compromis et un rejet des sels.

SWC - Sea Water Composite

Alors que le monde est confronté à une pénurie d'eau douce, Hydranautics propose une gamme de membranes RO SWC pour répondre aux exigences de l'industrie du dessalement. Les membranes SWC ont amélioré la productivité et le rejet des sels depuis plus de vingt ans, tout en réduisant leur impact sur l'environnement. Les membranes SWC sont disponibles dans une gamme de formulations innovantes en fonction du niveau de salinité de l'eau de mer requis.

CPA (Composite Polyamide)

La norme industrielle pour les taux de rejet de sel les plus élevés L'eau ultra-pure est essentielle dans de nombreuses applications industrielles. Les membranes OI CPA sont considérées comme la norme industrielle pour toutes les applications critiques de haute pureté - de l'industrie pharmaceutique à l'industrie énergétique.

Les membranes OI offrent des taux de rejet de sel les plus élevés pour les applications en eau saumâtre. Le débit élevé, l'efficacité et la rentabilité font des membranes CPA les meilleures membranes d'OI pour eaux saumâtres à haut rejet de l'industrie.

watec distribution

JOURNAL MEMBRANE OSMOSE INVERSE

Les membranes d'osmose inverse

Les éléments de la membrane enroulée en spirale de SUEZ Conçues à l'origine pour le dessalement de l'eau, sont maintenant utilisées dans une variété d'applications, y compris dans l'industrie laitière, dans la fabrication de produits, pour l'eau de haute pureté et à des températures élevées et des conditions de pH extrêmes.

AG series: standard brackish water RO elements

La série AG, famille d'éléments membranaires d'osmose inverse à couche mince se caractérisent par un flux élevé et un rejet important de chlorure de sodium. Les éléments AG Standard Brackish Water sont sélectionnés lorsqu'un rejet élevé et des pressions de fonctionnement aussi basses que 200 psi (1 379 kPa) sont souhaités. Ces éléments permettent des économies d'énergie modérées et sont considérés comme un standard dans l'industrie.

Type de membrane	Eléments RO eau saumâtre à rejet élevé AG HR	Eléments RO à eau saumâtre standard AG FR	Élément RO eau saumâtre à haut rejet et faible encrassement AG HR LF	Éléments d'osmose inverse d'eau saumâtre à faible encrassement AG LF
Exemple	AG-90 AG-365 AG-400 AG-400, 34 AG-440	AG4040FM FR, 34 AG8040F 400 FR, 34	AG-90 LF AG-400 LF, 34	AG4040F LF, WET AG8040F-400 LF, WET AG8040F-400 LF, 34
SALINITE	Recommandés pour l'eau saumâtre avec une concentration de sel (TDS) comprise entre 1000 et 10000 mg/l			
Spécifications		L'élément membranaire AG FR est spécialement conçu avec un Spacer plus grand pour améliorer les flux d'alimentation, maximisant l'énergie de l'élément et les efficacités de CIP		
Rejet moyen de NaCl 1,2	99.8%	99.5%	99.8%	99.5%
Rejet minimal de NaCl1,2	99,3 %	99.0%	99.3%	99.0%

¹ Rejet moyen de sel après 24 heures de fonctionnement. Le débit individuel peut varier : +/-20 %.

² Conditions de test : 2000 ppm de solution de NaCl à une pression de fonctionnement de 225 psi (1550 kPa), 77°F, pH 7 et un facteur de conversion de 15 %.

JOURNAL MEMBRANE OSMOSE INVERSE

Les membranes d'osmose inverse

Sea water

Ces membranes se caractérisent par un excellent rejet de chlorure de sodium. Ils sont sélectionnés quand une haute qualité de perméat est demandée par rapport à de l'eau de mer relativement haute en TDS Cette série assure un excellent rejet pour le fonctionnement avec de l'eau de mer (pression supérieure à 800 psi (5,516 kPa) et températures élevées).

Type de membrane	Éléments RO d'eau de mer à rejet élevé AD	Eléments RO eau de mer basse énergie à rejet élevé AE HR	
Exemple	AD-90 AD-365 AD-400, 34 AD-440	AE-90 AE-400, 34 AE-440	
SALINITE	32000 mg/l		
	la série AD assure un excellent rejet pour le fonctionnement avec de l'eau de mer (pression supérieure à 800 psi (5,516 kPa) et températures élevées).	la série AE HR assure un excellent débit à des pressions inférieures habituellement rencontrées sur les installations de dessalement d'eau de mer traditionnelles	
Rejet moyen de NaCl 1,2	99.8%	99.8%	
Rejet minimal de NaCl1,2	99,5 %	99.3%	

¹ Rejet moyen de sel après 24 heures de fonctionnement. Le débit individuel peut varier : +/-20 %.

² Conditions de test : 32000 mg/l de solution de NaCl à une pression de fonctionnement de 800 psi (5516 kPa), 77°F, un pH 7,5 et un facteur de conversion de 10 %